Far-from-Equilibrium Measurements of Thermodynamic Length
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Thermodynamic length is a path function that generalizes the notion of length to the surface

of thermodynamic states.

Here, we show how to measure thermodynamic length in far-from-
equilibrium experiments using the work fluctuation relations.

For these microscopic systems, it

proves necessary to define the thermodynamic length in terms of the Fisher information. Conse-
quently, the thermodynamic length can be directly related to the magnitude of fluctuations about
equilibrium. The work fluctuation relations link the work and the free energy change during an
external perturbation on a system. We use this result to determine equilibrium averages at inter-
mediate points of the protocol in which the system is out-of-equilibrium. This allows us to extend
Bennett’s method to determine the potential of mean force, as well as the thermodynamic length,

in single molecule experiments.

PACS numbers: 05.70.Ln, 05.40.-a

Modern experimental techniques allow the manipula-
tion of single molecules and the measurement of the ther-
modynamic properties of microscopic systems [1-5]. For
example, Collin et al. [3] recently measured the work
performed on a single RNA hairpin as it was folded
and unfolded using optical tweezers. From these out-
of-equilibrium measurements, they extracted the equi-
librium free energy change using the recently discovered
work fluctuation relations [6-8]. [Eq. (13)] These rela-
tions, which connect the free energy change and the work
done on a system by an external perturbation, remain
valid no matter how far the system is driven away from
thermal equilibrium.

In this Letter, we will demonstrate that free energy is
not the only important quantity that can be extracted
from out-of-equilibrium work measurements; we can also
measure the thermodynamic length [9-16]. Thermody-
namic length is a path function that measures the dis-
tance along a path in thermodynamic state space. This
is in contrast to the free energy change, a state function
which depends only on the initial and final values of the
controllable parameters, and not on the path. Mathe-
matically, the thermodynamic length is defined by a Rie-
mannian metric on the manifold of equilibrium ensem-
bles [17, 18]. Among other useful physical properties, the
thermodynamic length bounds the dissipation of slow,
but finite time transformations [12, 14]. Moreover, the
ability to measure thermodynamic length and free energy
change from out-of-equilibrium measurements indicates
that these equilibrium properties influence the behavior
of driven systems even far-from-equilibrium.

Thermodynamic length was originally defined using
the second derivatives of a thermodynamic potential with
respect to its natural variables [9, 10]. However, this
definition only works for microscopic systems when the
controlled variables are intensive (e.g. temperature) [16].
To circumvent this restriction, herein we will redefine

the thermodynamic length in terms of Fisher informa-
tion [17, 19]. This approach is equivalent to the orig-
inal definition for large systems in the thermodynamic
limit [16, 18], but can also be applied, without restric-
tion, to microscopic systems, or to problems outside of
thermodynamics entirely.

Given a family of probability distributions m(z|\) for
outcomes z that vary smoothly with a collection of pa-
rameters A = {\’}, the Fisher information matrix [20, 21]
is
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The length of a path A(s) for s € [0,1] in parameter
space measured using the Fisher metric (also known as
the Fisher-Rao, Rao or entropy differential metric) is [19]
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The Fisher matrix Z;; acts as a metric tensor and equips
the manifold of parameters with a Riemannian met-
ric [17, 19]. It is also useful to define a related quantity,
the Fisher divergence
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The length and divergence are connected by the relation
J > L2 due to the Cauchy-Schwarz inequality.

The Fisher metric can be applied to any family of prob-
ability distributions. Here, we focus on probability dis-
tributions of a system in thermal equilibrium. In the
canonical ensemble [22, 23], the probability of a micro-
state x is
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where 8 = 1/kgT is the inverse temperature T of the
environment in natural units (kg is the Boltzmann con-
stant), E(x, \) is the energy of the system, which depends
both on the internal state x and the external control pa-
rameters A, and F'()) is the free energy

BF(N) = —In)_exp{—BE(z,\)} . (5)

For a case in which ) is a single controllable parameter,
the Fisher information is
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where (---), indicates an ensemble average over the dis-
tribution m(x|A).

Let us consider two examples. First, suppose the sys-
tem under examination is a single polymer, and the pa-
rameter under control is the end-to-end distance L (Con-
cretely, an RNA hairpin, with DNA handles, attached to
beads held by a translating optical trap [3]). The in-
stantaneous tension 7 = g—f is the force exerted on the
polymer by the apparatus constraining the distance be-
tween the polymer ends. The Fisher information for this
system is equal to the variance of the tension at equilib-
rium
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and therefore the thermodynamic length [Eq. (2)] is equal
to the cumulative root-mean-square equilibrium fluctua-
tions in tension on the molecule.

On the other hand, suppose control is exerted by ap-
plying constant tension to the ends of the polymer. The
total energy is then a linear function of length and ten-
sion, E(x,7) = U(x) — 7 L(z), and the Fisher informa-
tion is equal to the variation of the end-to-end polymer
length at equilibrium.
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Again, the Fisher information has a simple physical in-
terpretation in terms of equilibrium fluctuations, and the
thermodynamic length [Eq. (2)] is equal to the cumula-
tive root-mean-square fluctuations along the path. If, as
in the second case, the energy is a linear function of the
control parameter, the Fisher information is equal to the
second derivative of the free entropy [15, 16, 18], but this
is not true in the general.

To demonstrate how to measure thermodynamic
length in far-from-experiments, we will model the dy-
namics of the system as a driven, discrete time, inho-
mogeneous Markov process [7, 24, 25]. The microscopic
state of the system is denoted by x, and the history of
the system will be denoted by x4 = {%a, Tat1, -, To},
where a < b. The time reversed trajectory is denoted by
Zpa = {Zp,Tp—1, - ,xq}. The internal energy E(x, )

depends on a control parameter A\ that varies according
to a predetermined protocol, Agp = {Aa, Aat1,- , Ab}-
The protocol of the conjugate time reversed experiment
is Apo = { Mo, Ao—1, -, A} At each integer time ¢, the
control value changes from \; to A¢41 in the forward pro-
tocol and A;11 to A¢ in the reversed protocol. Between
these time points A is constant.

The probability of observing a particular trajectory
Zq,b as the system is driven from thermal equilibrium
by the protocol A, can be written as [7, 24, 25]
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where 7(x4|\,) is the initial equilibrium probability dis-
tribution with fixed A [Eq. (4)], and p(x4q1|xs, At) is the
probability of transitioning from state x; at time ¢ to
state z441 at t 4+ 1, given the value A\; at time ¢. These
transition probabilities satisfy the stochastic property
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which ensures conservation of probability, and the bal-
ance condition

> p(a'ae, Am(e|h) = w(a’|\) (11)

which ensures that the distribution given by the canon-
ical ensemble is the stationary distribution at time t.
While the transition matrix at time ¢ preserves m(x¢|A:),
the probability distribution of a state at time ¢ > a along
a trajectory is in general different from this equilibrium
distribution in our model for a dynamical process driven
away from an initial equilibrium.

The transition probabilities of the forward and time
reversed dynamics are related, since, at equilibrium, the
transition z — 2’ in the forward dynamics has the same
probability as the transition ' — z in the reversed dy-
namics [25, 26], given a fixed A. Explicitly, the reverse
time transitions are related to the forward time transi-
tions by

Plala’, A) w(@'|A) = p(2'|a, A) w(z[A).  (12)

A direct consequence of this time reversal symmetry is
the work fluctuation theorem [3, 7, 25]: the ratio of the
probabilities of the forward and reverse trajectories is the
exponential of the observed dissipation along the forward
trajectory.
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is the work transfered to the system during the for-
ward process [24, 27]. The dissipation Dgp[zes] =
B(Wyplxas — AF,y), the irreversible increase in en-
tropy along the forward trajectory, is proportional to
the difference between the work and the free energy
change. Note that work, free energy change and dissi-
pation are all odd functionals under a time reversal, e.g.
Wb,a[‘%b,a] = - a,b[xa,b]~

We can express the trajectory ensemble average of an
arbitrary trajectory dependent function Flz, ), starting
from thermal equilibrium, as
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and similarly for the conjugate process
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time reversal.
A key result in our development links two different
trajectory ensemble averages
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where 0 < a < b < T. Given a protocol Ay, we can
extract the value of a trajectory ensemble average over a
subinterval A, p, as if the system began in equilibrium at
an intermediate time a, by re-weighting the observations
by the exponential of the dissipation from the initial to
intermediate time.

This result follows directly from the work fluctuation
relation [Eq. (13)], and the Markovian property of the
dynamics.
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We truncate the time interval of the trajectory ensemble
average using the stochastic property in Eq. (10), ap-
ply a time reversal with the work fluctuation theorem in
Eq. (13), truncate again, and apply a second time rever-
sal. This result generalizes previous trajectory ensemble
averages of Hummer and Szabo [8] and Chelli et al. [28].

We can now use this relation to extract the thermo-
dynamic length from far-from-equilibrium experiments.
The discrete time analogs of the Fisher length and diver-
gence are the cumulative Jensen-Shannon length
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and cumulative Jensen-Shannon divergence [16],
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Here, JS(p1, p2) is the Jensen-Shannon divergence [29, 30]
between two probability distributions p; and po,

Js<p1,p2)= Zpl
p2(z)
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The Jensen-Shannon length is less than the Fisher length
Ljs < L, and approaches equality as the step size along
the path decreases [16].

We can use the contracted trajectory average Eq. (17),
and the canonical probabilities [Eq. (4)] to write the
the Jensen-Shannon divergence between any pair of time
points along the path
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as a trajectory average of the dissipation D along the for-
ward and reverse protocols. While JS(my, m41) is defined
in terms of averages over equilibrium probability distri-
butions, it can be related to trajectory ensemble averages
of processes driven arbitrary far-from-equilibrium. The
derivation of Eq. (22) requires the time reversal symme-
try in Eq. (12).

We now encounter an apparent complication. The dis-
sipation D, p = 0 (Wep — AF,p) depends on both the
work and the free energy. Therefore, we must also de-
termine the potential of mean force, the free energy as
a function of A, along the entire path. This problem
of extracting free energy profiles from out-of-equilibrium
work measurements (rather than just the difference in
free energy between the initial and final ensembles) has
attracted recent attention [28, 31, 32]. Here, we will solve
this problem by adapting Bennett’s maximum likelihood
method [5, 33-35], which, as we shall see, is intimately
linked to the thermodynamic divergence [16].

Suppose we have taken measurements of the work dur-
ing N repetitions of a protocol A4, and another N mea-
surements from the conjugate protocol 1~\b’a. Each rep-
etition begins in thermal equilibrium with the control
parameter fixed at A\, or \,. Then the Bennett log-
likelihood that the free energy change AF,; has a par-
ticular value is [16]
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where W( and W( ") are the work measured between a
and b durlng the nth repetltlon of the forward and reverse
experiment respectively.

Next we extend this result using the contracted trajec-
tory average [Eq. (17)] to estimate the likelihood of the
free energy change between any two points along the pro-
tocol. In particular, we can estimate the log-likelihood
for the entire free energy profile by summing the log-
likelihood for every pair of neighboring time points

Z Ze DUtlnﬁ (24)
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Here, {F} = (Fy, F1,---, Fr) is the free energy profile.
Since only differences in free energy are relevant, one
free energy is set to zero or some other convenient ref-
erence. Since each experimental realization of the for-
ward and reverse protocols begins in equilibrium, the
probability of each forward and reverse realization is
Py, n[ro,n] and P o[Zn,0] respectively. Hence, we have
written this expression using the measured dissipation
Df:b) = ﬂ(W(’n) — AF, ) so that the relationship with
Eq. (22) is clear. To within an additive constant, the total
Bennett log-likelihood is proportional to the cumulative
Jensen-Shannon divergence. Therefore, we can simulta-
neously determine the potential of mean force, the ther-
modynamic divergence, and the thermodynamic length
from the same collection of work measurements. We first
determine the free energy profile { F'} that maximizes the
log-likelihood, which immediately provides an estimate of
the thermodynamic divergence,

Trs = % (;e({ﬁ}) T TNln2> . (25)

We can then calculate a maximum likelihood estimate of
the thermodynamics length Ljg in Eq. (19) using the free
energy profile.

The analysis developed in this paper allows the extrac-
tion of thermodynamics length from the force-extension
curves already measured in single molecule RNA pulling
experiments [1-3]. One captures a RNA hairpin in an
optical tweezer, and repeatedly measure the force on the
RNA molecule as a function of extension. These far-from-
equilibrium force extension curves will then yield the po-
tential of mean force, plus the thermodynamic length and
divergence of the protocol. Far-from-equilibrium mea-
surements of thermodynamic length have interesting im-
plications for nano-scale machines and biological motors,
since the square of this length bounds the dissipation
during finite time protocols [12]. Hence, thermodynamic
length is intimately connected with the useful work that
a system can perform. It would, for example, be interest-
ing to measure the thermodynamic length along the cycle
of a molecular motor. For a machine operating at a finite
rate, but otherwise optimized to minimize dissipation, it
is expected that the rate of change in thermodynamic
length along the cycle would be constant [13].
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